On the Schrodinger equation for the interaction $x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 164031
(http://iopscience.iop.org/0305-4470/16/17/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:35

Please note that terms and conditions apply.

On the Schrödinger equation for the interaction $x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$

R N Chaudhuri and B Mukherjee ${ }^{\dagger}$
Physics Department, Visva-Bharati, Santiniketan 731235, West Bengal, India

Received 24 May 1983, in final form 7 July 1983

Abstract

The method of obtaining the explicit expressions of all the even-and odd-parity exact solutions of the Schrödinger equation for the interaction $x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$ is discussed when the couplings λ and g satisfy some specific relations. In the general case a simple equation for approximating the energy eigenvalues has been developed.

1. Introduction

The importance of the one-dimensional non-polynomial interaction Lagrangian of the kind $x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$ has been pointed out by a number of authors in connection with the nonlinear Lagrangian field theory (Risken and Vollmer 1967) and nonlinear optics (Haken 1970). The Schrödinger equation with such an interaction Lagrangian is the analogue of a zero-dimensional field theory with a nonlinear Lagrangian which is used in elementary particle physics (Biswas et al 1973, Salam and Strathdee 1970).

The Schrödinger equation

$$
\begin{equation*}
\left(\mathrm{d}^{2} / \mathrm{d} x^{2}+E-V(x)\right) \psi(x)=0 \tag{1}
\end{equation*}
$$

with the potential

$$
\begin{equation*}
V(x)=x^{2}+\lambda x^{2} /\left(1+g x^{2}\right) \quad-\infty<x<\infty \tag{2}
\end{equation*}
$$

has recently been studied by many authors using different variational techniques (Mitra 1978, Bessis and Bessis 1980), the Padé approximant method (Lai and Lin 1982), the Hill determinant method (Hautot 1981), the asymptotic series expansion scheme (Kaushal 1979), the finite difference method (Galicia and Killingbeck 1979) and the perturbed operators method (Bessis et al 1983). The existence of a class of exact solutions for particular values of λ and g has recently been shown by Flessas (1981), Varma (1981), Whitehead et al (1982) and Znojil (1983). Whitehead et al (1982) have also presented a number of theorems regarding the general nature of these solutions. Znojil (1983) has proceeded along the same lines as Whitehead et al (1982) and has constructed the exact wavefunctions and an analytic continued-fractional Green function for the Schrödinger equation (1) with the potential (2) and with a more general potential.

In the present paper we would like to make a systematic study of the exact evenand odd-parity solutions in the form of products of exponential and polynomial

[^0]functions of x. For the existence of these types of solutions it is necessary that λ and g should be related. Our method described in $\S 2$ is suitable for numerical evaluation of all the coefficients of the polynomials of x and the corresponding connection between λ and g which is identical to that given by Whitehead et al (1982). In § 3 we develop an approximation scheme which is simple and accurate for obtaining the energy eigenvalues in the general case. The perturbation calculation for the interaction (2) is made by expanding the factor $1 /\left(1+g x^{2}\right)$ in a power series for $g x^{2}$. Lai and Lin (1982) have applied the Hellmann-Feynman theorem and hypervirial theorems to the perturbation series to calculate the energy eigenvalues. They have also employed the hypervirial relations (Hirschfelder 1960, Swenson and Danforth 1972) and the Padé approximant method (Baker 1965, Loeffel et al 1969, Killingbeck 1978, Lai 1981) to the energy series. The results, however, require the asymptotic expansion of the factor $1 /\left(1+g x^{2}\right)$ in a power series of $g x^{2}$ which is valid for low values of $g(\leqslant 2)$ only. The variational calculations on the other hand require very elaborate numerical computations. We would like to solve the problem in a completely different way. We replace a slowly varying function by a constant and obtain a simple expression for the energy eigenvalues. The results of the present calculation are in good agreement with the existing results.

2. Exact solutions to the Schrödinger equation

First of all we make the standard substitution

$$
\begin{equation*}
\psi(x)=\exp \left(-x^{2} / 2\right) \phi(x) \tag{3}
\end{equation*}
$$

to transform the Schrödinger equation into the form

$$
\begin{equation*}
\left(1+g x^{2}\right)\left[\phi^{\prime \prime}(x)-2 x \phi^{\prime}(x)\right]+\left[E-1+x^{2}(E g-g-\lambda)\right] \phi(x)=0 . \tag{4}
\end{equation*}
$$

It is clear from this equation that $x=0$ is an ordinary point and $x=\infty$ is an irregular singular point of the differential equation when $g>0$. Therefore equation (4) admits a convergent series solution about $x=0$. The infinite series must be truncated in order to satisfy the boundary conditions

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} \psi(x)=0 \tag{5}
\end{equation*}
$$

for the normalisation of the wavefunction. Thus we may assume the even- and odd-parity solutions of equation (4) in the form of polynomials of x

$$
\begin{align*}
& \phi_{2 n}^{\mathrm{e}}(x)=1+\sum_{m=1}^{n} a_{2 m} x^{2 m} \tag{6}\\
& \phi_{2 n+1}^{o}(x)=x+\sum_{m=1}^{n} a_{2 m+1} x^{2 m+1} \tag{7}
\end{align*}
$$

where the overall normalisation constants of the wavefunctions have been omitted. The superscripts ' e ' and ' o ' in equations (6) and (7) refer to the even- and odd-parity solutions.

We substitute (6) and (7) into (4) to obtain the recurrence relations between the coefficients $A_{2 n, 2 n+1}$. These relations may be written in matrix notation:

$$
\left(\begin{array}{ccccc}
b_{11} & 0 & 0 & & \cdots \tag{8}\\
b_{21} & b_{22} & 0 & & \cdots \\
b_{31} & b_{32} & b_{33} & & \\
0 & b_{42} & b_{43} & \ddots & \\
\vdots & \vdots & \vdots & & b_{n n}
\end{array}\right)\left(\begin{array}{c}
a_{2+\nu} \\
a_{4+\nu} \\
\vdots \\
a_{2 n+\nu}
\end{array}\right)=\left(\begin{array}{c}
-4 n-\lambda^{\prime} \\
-4 n g \\
0 \\
\vdots \\
0
\end{array}\right)
$$

with

$$
\begin{equation*}
\left[(2 n-1+\nu)(2 n+\nu) g+\lambda^{\prime}\right] a_{2 n+\nu}+4 g a_{2 n-2+\nu}=0 \quad n \geqslant 2 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n}^{e, 0}=4 n+1+\lambda^{\prime}+2 \nu \quad n \geqslant 0 \tag{10}
\end{equation*}
$$

where $\nu=0$ for the even-parity solutions and $\nu=1$ for the odd-parity solutions, $\lambda^{\prime}=\lambda / g$, and the non-zero matrix elements $b_{i j}$ of the equation (8) are given by

$$
\begin{align*}
& b_{i i}=(2 i-1+\nu)(2 i+\nu) \tag{11a}\\
& b_{i i-1}=(2 i-3+\nu)(2 i-2+\nu) g+4(n-i+1)+\lambda^{\prime} \tag{11b}\\
& b_{i i-2}=4(n-i+2) g \quad i=1,2, \ldots, n . \tag{11c}
\end{align*}
$$

By solving (8) we can find all the coefficients in terms of λ and g and then equation (9) gives the relation between λ and g. Equation (8) has a unique solution because the determinant of the square matrix $b_{i j}$ is $(2 n+\nu)$!. The first four eigenvalues, the unnormalised eigenfunctions (apart from the exponential factor) and the relations between λ^{\prime} and g are given below:

$$
\begin{array}{lll}
\phi_{0}^{\mathrm{e}}(x)=1 & E_{0}^{\mathrm{e}}=1 & \lambda^{\prime}=0 \\
\phi_{1}^{\mathrm{o}}(x)=x & E_{1}^{\mathrm{o}}=3 & \lambda^{\prime}=0 \\
\phi_{2}^{\mathrm{e}}(x)=1-\frac{1}{2}\left(4+\lambda^{\prime}\right) x^{2} & E_{2}^{e}=5+\lambda^{\prime} \\
\lambda^{\prime}\left(\lambda^{\prime}+2 g+4\right)=0 & \\
\phi_{3}^{\mathrm{o}}(x)=x-\frac{1}{6}\left(4+\lambda^{\prime}\right) x^{3} & E_{3}^{\mathrm{o}}=7+\lambda^{\prime} \tag{4}\\
\lambda^{\prime}\left(\lambda^{\prime}+6 g+4\right)=0 . &
\end{array}
$$

For any value of n when the wavefunctions are given by (6) and (7) the coefficients may be determined from (8) by the application of Cramer's rule. For example $a_{2 n-2+\nu}$ and $a_{2 n+\nu}$ are given by

$$
a_{2 n-2+\nu}=\frac{1}{(2 n+\nu)!}\left|\begin{array}{ccccc}
b_{11} & 0 & \ldots & -4 n-\lambda^{\prime} & 0 \\
b_{21} & b_{22} & \ldots & -4 n g & 0 \\
b_{31} & b_{32} & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & 0 & b_{n n}
\end{array}\right|
$$

$$
a_{2 n+\nu}=\frac{1}{(2 n+\nu)!}\left|\begin{array}{ccccc}
b_{11} & 0 & \ldots & 0 & -4 n-\lambda^{\prime} \\
b_{21} & b_{22} & \ldots & 0 & -4 n g \\
b_{31} & b_{32} & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n n-1} & 0
\end{array}\right| .
$$

The condition for the existence of the solutions is given by (9). A little manipulation will show that this condition is identical to that obtained by Whitehead et al (1982, equation (2.14)) and therefore following Whitehead et al (1982) we may state the following important properties regarding the nature of solutions of equation (9): (i) $\lambda^{\prime}=0$ is always one of the roots, (ii) all the roots are real and (iii) the non-zero roots are all negative.

Here we have given explicit expressions of all the even- and odd-parity solutions. Equations (8) and (9) are suitable for numerical evaluation of all the eigenfunctions for specific values of λ^{\prime} and g given by (9).

3. Approximate eigenvalues

In the general case when $g>0$ we develop a method of obtaining the approximate eigenvalues of the Schrödinger equation (1) with the interaction (2). We may write equation (1) in two forms:

$$
\begin{align*}
& \left(\mathrm{d}^{2} / \mathrm{d} x^{2}+E-x^{2}-\lambda^{\prime} f_{1}(x)\right) \psi(x)=0 \tag{12}\\
& \left(\mathrm{~d}^{2} / \mathrm{d} x^{2}+E-x^{2}-\lambda^{\prime}+\lambda^{\prime} f_{2}(x)\right) \psi(x)=0 \tag{13}
\end{align*}
$$

where

$$
\begin{align*}
& f_{1}(x)=g x^{2} /\left(1+g x^{2}\right) \tag{14}\\
& f_{2}(x)=1 /\left(1+g x^{2}\right) \tag{15}
\end{align*}
$$

As x varies from $-\infty$ to $+\infty$ the function $f_{1}(x)$ runs from 1 to 1 through zero at $x=0$, whereas $f_{2}(x)$ runs from 0 to 0 through 1 at $x=0, f_{1}(x)$ and $f_{2}(x)$ being non-negative always. If the variations of these two functions are assumed to be small and they are replaced by their expectation values $\left\langle f_{1}\right\rangle$ and $\left\langle f_{2}\right\rangle$ in the considered quantum state. equations (12) and (13) become harmonic oscillator equations. We take the average of the two eigenvalues thus obtained, since it may be assumed that the error made by replacing $f_{1}(x)$ by $\left\langle f_{1}\right\rangle$ will be compensated by the error made by replacing $f_{2}(x)$ by $\left\langle f_{2}\right\rangle$. Both the functions $f_{1}(x)$ and $f_{2}(x)$ vary between 0 and 1 and the minimum of $f_{1}(x)$ falls at the maximum of $f_{2}(x)$ and vice versa, and moreover $f_{1}(x)$ is concave upwards whereas $f_{2}(x)$ is concave downwards. So the errors go in the opposite directions in the two cases and will cancel each other when added provided λ^{\prime} is small. According to this scheme the energy eigenvalues are given by

$$
\begin{equation*}
E_{n}=2 n+1+\frac{1}{2} \lambda^{\prime}-\lambda^{\prime}\left(\sqrt{\pi} 2^{n} n!\right)^{-1} I_{n} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{n}=\int_{0}^{\infty} \exp \left(-x^{2}\right) H_{n}^{2}(x)\left(1-g x^{2}\right) /\left(1+g x^{2}\right) \mathrm{d} x \tag{17}
\end{equation*}
$$

with $n=0,1,2, \ldots$ and $H_{n}(x)$ a Hermite polynomial of order n. The integrations of
equation (17) can be performed easily by using the following results (Gradshteyn and Ryzhik 1965):

$$
\begin{align*}
& \int_{0}^{\infty} \exp \left(-x^{2}\right) x^{2 n} /\left(1+g x^{2}\right) d x \\
& \quad=\frac{1}{2} \exp (1 / g) g^{-n-1 / 2} \Gamma\left(n+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}-n, 1 / g\right) \quad n \geqslant 0 \tag{18}
\end{align*}
$$

where $\Gamma(a, x)$ is the incomplete gamma function having the series expansion

$$
\begin{equation*}
\Gamma(a, x)=\Gamma(a)-\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{a+n}}{n!(a+n)} \tag{19}
\end{equation*}
$$

The results of the first four integrals I_{n} for any positive value of g are given below:

$$
\begin{align*}
& I_{0}=\frac{1}{2} g^{-1 / 2} \exp (1 / g)\left[\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}, 1 / g\right)-\Gamma\left(\frac{3}{2}\right) \Gamma\left(-\frac{1}{2}, 1 / g\right)\right] \tag{20a}\\
& I_{1}= 2 g^{-3 / 2} \exp (1 / g)\left[\Gamma\left(\frac{3}{2}\right) \Gamma\left(-\frac{1}{2}, 1 / g\right)-\Gamma\left(\frac{5}{2}\right) \Gamma\left(-\frac{3}{2}, 1 / g\right)\right] \tag{20b}\\
& I_{2}= \exp (1 / g)\left(-8 g^{-5 / 2} \Gamma\left(\frac{7}{2}\right) \Gamma\left(-\frac{5}{2}, 1 / g\right)+8(1+g) g^{-5 / 2} \Gamma\left(\frac{5}{2}\right) \Gamma\left(-\frac{3}{2}, 1 / g\right)\right. \\
&\left.\quad-(8+2 g) g^{-3 / 2} \Gamma\left(\frac{3}{2}\right) \Gamma\left(-\frac{1}{2}, 1 / g\right)+2 g^{-1 / 2} \Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}, 1 / g\right)\right) \tag{20c}\\
& I_{3}= \exp (1 / g)\left(-32 g^{-7 / 2} \Gamma\left(\frac{9}{2}\right) \Gamma\left(-\frac{7}{2}, 1 / g\right)+(32+96 g) g^{-7 / 2} \Gamma\left(\frac{7}{2}\right) \Gamma\left(-\frac{5}{2}, 1 / g\right)\right. \\
&\left.\quad-(96+72 g) g^{-5 / 2} \Gamma\left(\frac{5}{2}\right) \Gamma\left(-\frac{3}{2}, 1 / g\right)+72 g^{-3 / 2} \Gamma\left(\frac{3}{2}\right) \Gamma\left(-\frac{1}{2}, 1 / g\right)\right) \tag{20d}
\end{align*}
$$

With the help of these equations and (19) the first four eigenvalues can be calculated easily. They are given in table 1 for $g=0.5,1,2,5,10,20,100$ and 500 . We find that for small values of λ^{\prime}, the eigenvalues are linear functions of λ^{\prime}. The equations can also be used to evaluate the energy eigenvalues for small negative values of λ^{\prime}. The first four eigenvalues for $g \leqslant 2$ obtained by this method are compared with the existing results in table 2. The agreement in general is excellent. When g is large we have to take only a few terms of series (19) of the incomplete gamma function and the calculation becomes simple. The expressions of the first four eigenvalues when g is sufficiently large are given below:

$$
\begin{align*}
& E_{0}=1+\lambda^{\prime}\left(1-\sqrt{\pi} g^{-1 / 2}+\frac{5}{2} g^{-1}\right) \tag{21a}\\
& E_{1}=3+\lambda^{\prime}\left(1-\frac{3}{2} g^{-1}+2 \sqrt{\pi} g^{-3 / 2}\right) \tag{21b}\\
& E_{2}=5+\lambda^{\prime}\left(1-\frac{1}{2} \sqrt{\pi} g^{-1 / 2}+\frac{9}{4} g^{-1}\right) \tag{21c}\\
& E_{3}=7+\lambda^{\prime}\left(1-\frac{3}{2} g^{-1}+\frac{3}{2} \sqrt{\pi} g^{-3 / 2}\right) . \tag{21d}
\end{align*}
$$

Table 1. The expressions of the first four eigenvalues for $g=0.5,1,2,5,10,20,100$, 500 and small values of λ.

g	$E_{0}-1$	$E_{1}-3$	$E_{2}-5$	$E_{3}-7$
0.5	0.3145246λ	0.741903λ	0.9314597λ	0.9973218λ
1	0.2421296λ	0.51574λ	0.5895768λ	0.6489344λ
2	0.1721604λ	0.3278394λ	0.3443208λ	0.3742396λ
5	0.0979383λ	0.1608245λ	0.1559797λ	0.169855λ
10	0.0594434λ	0.0881112λ	0.0827987λ	0.0903768λ
20	0.0343377λ	0.0465662λ	0.043273λ	0.047105λ
100	0.008411λ	0.0098317λ	0.0092574λ	0.0098449λ
500	0.0018451λ	0.0019926λ	0.0019279λ	0.0019929λ

Table 2. The first four eigenvalues (correct up to five decimal places) obtained by four different methods for $g=0.5,1$ and 2 .

	Mitra (1978)	Bessis and Bessis (1980)	Lai and Lin (1982)	The present calculation
$\begin{aligned} & \lambda=0.1 \\ & g=0.5 \end{aligned}$	1.03121	1.03121	1.03121	1.03145
	3.07389	3.07390	3.07390	3.07419
	5.09305	5.09307	5.09306	5.09315
	-	7.10585	7.10584	7.09973
$\begin{aligned} & \lambda=0.5 \\ & g=0.5 \end{aligned}$	1.15156	1.15156	1.15156	1.15726
	3.36380	3.36380	3.36380	3.37095
	5.46320	5.46321	5.46321	5.46573
	-	7.52788	7.52789	7.49866
$\begin{aligned} & \lambda=1 \\ & g=0.5 \end{aligned}$	1.29295	1.29295	1.29295	1.31452
	3.71390	3.71390	3.71390	3.74190
	5.92063	5.92063	5.92063	5.93146
	-	8.05238	8.05244	7.99732
$\begin{aligned} & \lambda=0.1 \\ & g=1 \end{aligned}$	1.02410	1.02419	1.02412	1.02421
	3.05149	3.05165	3.05153	3.05157
	5.03444	5.05929	5.05899	5.05896
	-	7.06550	7.06497	7.06489
$\begin{aligned} & \lambda=0.5 \\ & g=1 \end{aligned}$	1.11854	1.11859	1.11855	1.12106
	3.25577	3.25584	3.25580	3.25787
	5.29488	5.29506	5.29492	5.29479
	-	7.32454	7.32446	7.32447
$\begin{aligned} & \lambda=1 \\ & g=1 \end{aligned}$	1.23235	1.23237	1.23235	1.24213
	3.50738	3.50742	3.50740	3.51574
	5.58977	5.58986	5.58983	5.58958
	-	7.64832	7.64907	7.64893
$\begin{aligned} & \lambda=0.1 \\ & g=2 \end{aligned}$	1.01718	1.01789	1.01728	1.01722
	3.03276	3.03177	3.03296	3.03278
	5.03444	5.05585	3.03455	5.03443
	-	7.03474	7.03776	7.03742
$\begin{aligned} & \lambda=0.5 \\ & g=2 \end{aligned}$	1.08519	1.08706	1.08529	1.08608
	3.16346	3.18678	3.16371	3.16392
	5.17240	5.17689	5.17258	5.17216
	-	7.22654	7.18801	7.18715
$\begin{aligned} & \lambda=1 \\ & g=2 \end{aligned}$	1.16867	1.17049	1.16872	1.17216
	3.32602	3.32904	3.32614	3.32780
	5.34524	5.34849	5.34564	5.34432
	-	7.38114	7.37834	7.37424

It is interesting to compare our results given by formula (16) and the asymptotic expressions (21) with the exact values of Bessis and Bessis (1980) for large values of g. The first four energy levels for $g=100$ and 500 are given in table 3. From the tables it is clear that this simple scheme is suitable for excited state energy eigenvalues and for large values of g. As is expected, the eigenvalues decrease steadily with

Table 3. The first four energy levels for high values of g : (a) formula (16), (b) formula (21), (c) Bessis and Bessis (1980).

	The present calculation (a)	The expressions (21) (b)	Bessis and Bessis (1980) (c)
$\begin{aligned} & \lambda=0.1 \\ & g=100 \end{aligned}$	1.0008411	1.0008478	1.0008411
	3.00098317	3.0009885	3.0009831
	5.00092754	5.0009339	5.0009257
	7.00098449	7.0009877	7.0009845
$\begin{aligned} & \lambda=10 \\ & g=100 \end{aligned}$	1.08411	1.08478	1.0840643
	3.098317	3.09885	3.0983170
	5.092754	5.09339	5.09276246
	7.098449	7.09877	7.0984491
$\begin{aligned} & \lambda=100 \\ & g=100 \end{aligned}$	1.8411	1.84775	1.8363850
	3.98317	3.98854	3.9830992
	5.92754	5.93388	5.9283525
	7.98449	7.98766	7.9844448
$\begin{aligned} & \lambda=0.1 \\ & g=500 \end{aligned}$	1.00018451	1.0001851	1.00011849
	3.00019926	3.0001995	3.0001992
	5.00019279	5.0001930	5.0001928
	7.00019929	7.0001994	7.0001992
$\begin{aligned} & \lambda=100 \\ & g=500 \end{aligned}$	1.18451	1.18515	1.1848632
	3.19926	3.19946	3.1992601
	5.19276	5.19297	5.1928043
	7.19929	7.19945	7.1992879
$\begin{aligned} & \lambda=500 \\ & g=500 \end{aligned}$	1.92255	1.92573	1.9232260
	3.99630	3.99732	3.9962969
	5.96395	5.96487	5.9641161
	7.99645	7.99724	7.9964367

increasing g and fixed λ and approach the eigenvalues $2 n+1(n=0,1,2, \ldots)$ of the harmonic oscillator asymptotically for large g.

4. Conclusion

In this paper we have presented a method of obtaining all the exact even- and odd-parity eigenvalues and eigenfunctions when λ and g are related by some specific relations. The eigenfunctions and the eigenvalues reduce to the harmonic oscillator eigenfunctions and eigenvalues as $\lambda \rightarrow 0$. In the general case a simple equation for approximating the energy eigenvalues has been developed. For large values of g and small λ / g it seems that the present method works well, whereas the asymptotic series expansion scheme (Kaushal 1979), Padé approximant method (Lai and Lin 1982) and the variational calculation of Mitra (1978) are restricted to low values of $g \leqslant 2$. The present scheme is simple and may be used for obtaining excited state energy eigenvalues. It is clear from (16) and (17) that we have in fact assumed that ($\left.1-g x^{2}\right) /(1-$
$g x^{2}$) is a slowly varying function and we have taken its expectation value in the considered quantum state. It should be mentioned here that the method of approximating a slowly varying function by a constant has been used for a long time in the literature for the case of the Yukawa potential (Ecker and Weizel 1956, Lam and Varshni 1976, Talukdar et al 1978, Das et al 1979) and exponential cosine screened Coulomb potential (Dutt 1979, Ray and Ray 1980).

References

Baker G A Jr 1965 Adv. Theor. Phys. 11
Bessis R B and Bessis G 1980 J. Math. Phys. 212780
Bessis N, Bessis G and Hadinger G 1983 J. Phys. A: Math. Gen. 16497
Biswas S N, Malik G P and Sudarshan E C G 1973 Phys. Rev. D 72884
Das U, Chakravarty S and Talukdar B 1979 J. Math. Phys. 20887
Dutt R 1979 Phys. Lett. 73A 310
Ecker G and Weizel W 1956 Ann. Phys., Lpz 17126
Flessas G P 1981 Phys. Lett. 83A 121
Galicia S and Killingbeck J 1979 Phys. Lett. 71A 17
Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series, and Products (New York: Academic) p 319
Haken H 1970 Laser Theory in Encyclopedia of Physics vol XXV/2c (Princeton, NJ: Van Nostrand)
Hautot A 1981 J. Comput. Phys. 3972
Hirschfelder J D 1960 J. Chem. Phys. 331462
Kaushal S K 1979 J. Phys. A: Math. Gen. 12 L253
Killingbeck J 1978 Phys. Lett. 65A 87
Lai C S 1981 Phys. Rev. A 23455
Lai C S and Lin H E 1982 J. Phys. A: Math. Gen. 151495
Lam C S and Varshni Y P 1976 Phys. Lett. 59A 363
Loeffel J J, Martin A, Simon B and Wightman A S 1969 Phys. Lett. 30B 656
Mitra A K 1978 J. Math. Phys. 192018
Ray P P and Ray A 1980 Phys. Lett. 78A 443
Risken H and Vollmer H D 1967 Z. Phys. 201323
Salam A and Strathdee J 1970 Phys. Rev. D 13296
Swenson R J and Danforth S H 1972 J. Chem. Phys. 571734
Talukdar B, Chaudhuri R N, Das U and Banerjee P 1978 J. Math. Phys. 191654
Varma V S 1981 J. Phys. A: Math. Gen. 14 L489
Whitehead R R, Watt A, Flessas G P and Nagarajan M A 1982 J. Phys. A: Math. Gen. 151217
Znojil M 1983 J. Phys. A: Math. Gen. 16279

[^0]: \dagger Present address: Department of Physics, TDB College, Raniganj, Burdwan, India.

