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x2 +Ax2/(1 +gx2) 
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Abstract. The method of obtaining the explicit expressions of all the eve;- and odd-parity 
exact solutions of the Schrodinger equation for the interaction x 2 + A x - / I l  +gx*)  is dis- 
cussed when the couplings A and g satisfy some specific relations. In the general case a 
simple equation for approximating the energy eigenvalues has been developed. 

1. Introduction 

The importance of the one-dimensional non-polynomial interaction Lagrangian of 
the kind x 2  +Ax2/(1 + gx2) has been pointed out by a number of authors in connection 
with the nonlinear Lagrangian field theory (Risken and Vollmer 1967) and nonlinear 
optics (Haken 1970). The Schrodinger equation with such an interaction Lagrangian 
is the analogue of a zero-dimensional field theory with a nonlinear Lagrangian which 
is used in elementary particle physics (Biswas et a1 1973, Salam and Strathdee 1970). 

The Schrodinger equation 

(d2/dXZ+E- V ( X ) ) $ ( X ) = ~  (1) 

with the potential 
V(x) =x2+Ax2/ ( l+gx2)  - 

has recently been studied by many authors using different variational techniques (Mitra 
1978, Bessis and Bessis 1980), the Pad6 approximant method (Lai and Lin 1982), 
the Hill determinant method (Hautot 1981), the asymptotic series expansion scheme 
(Kaushal 1979), the finite difference method (Galicia and Killingbeck 1979) and the 
perturbed operators method (Bessis et a1 1983). The existence of a class of exact 
solutions for particular values of A and g has recently been shown by Flessas (1981), 
Varma (1981), Whitehead et a1 (1982) and Znojil (1983). Whitehead et a1 (1982) 
have also presented a number of theorems regarding the general nature of these 
solutions. Znojil(l983) has proceeded along the same lines as Whitehead et a1 (1982) 
and has constructed the exact wavefunctions and an analytic continued-fractional 
Green function for the Schrodinger equation (1) with the potential (2) and with a 
more general potential. 

In the present paper we would like to make a systematic study of the exact even- 
and odd-parity solutions in the form of products of exponential and polynomial 
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functions of x. For the existence of these types of solutions it is necessary that A and 
g should be related. Our method described in 8 2 is suitable for numerical evaluation 
of all the coefficients of the polynomials of x and the corresponding connection 
between h and g which is identical to that given by Whitehead et a1 (1982). In § 3 
we develop an approximation scheme which is simple and accurate for obtaining the 
energy eigenvalues in the general case. The perturbation calculation for the interaction 
( 2 )  is made by expanding the factor l / ( l+gx’)  in a power series for gx’. Lai and 
Lin (1 982) have applied the Hellmann-Feynman theorem aiid hypervirial theorems 
to the perturbation series to calculate the energy eigenvalues. They have also employed 
the hypervirial relations (Hirschfelder 1960, Swenson and Danforth 1972) and the 
Pad6 approximant method (Baker 1965, Loeffel et a1 1969, Killingbeck 1978, Lai 
1981) to the energy series. The results, however, require the asymptotic expansion 
of the factor 1/(1 Sgx’j in a power series of gxz which is valid for low values of g ( 6 2 )  
only. The variational calculations on the other hand require very elaborate numerical 
computations. We would like to solve the problem in a completely different way. We 
replace a slowly varying function by a constant and obtain a simple expression for 
the energy eigenvalues. The results of the present calculation are in good agreement 
with the existing results. 

2. Exact solutions to the Schrodinger equation 

First of all we make the standard substitution 

to transform the Schrodinger equation into the form 

(1 + gx 2 ) [ q 5 ” ( ~ )  - ~xI$’(x)] + [E - 1 + x ’(Eg - g - A)]q5 (x) = 0. (4) 

It is clear from this equation that x = 0 is an ordinary point and x = CO is an irregular 
singular point of the differential equation when g > 0. Therefore equation (4) admits 
a convergent series solution about x = 0. The infinite series must be truncated in 
order to satisfy the boundary conditions 

lim Ij/(x)=O 
x+*m 

for the normalisation of the wavefunction. Thus we may assume the even- and 
odd-parity solutions of equation (4) in the form of polynomials of x 

where the overall normalisation constants of the wavefunctions have been omitted. 
The superscripts ‘e’ and ‘0’ in equations (6) and (7) refer to the even- and odd-parity 
solutions. 
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We substitute (6) and (7) into ( 4 )  to obtain the recurrence relations between the 
coefficients A2n,2n+l. These relations may be written in matrix notation: 

with 

[(2n - 1 + v ) ( 2 n  + v)g +h’]a2,+, + 4 g ~ 2 , - 2 + ~  = 0 n 2 2  (9)  

and 

€ ~ “ = 4 n + l + A ’ + 2 v  n a O  

where v = 0 for the even-parity solutions and v = 1 for the odd-parity solutions, 
A ’  = A/g, and the non-zero matrix elements bij of the equation (8) are given by 

bli = (2i  - 1 + v) (2 i  + v )  ( I l a )  

bil-1 = (2i  - 3  + v) (2 i  - 2  + v ) g  +4(n  - i  + 1 )  + A ’  

bu-2 = 4(n - i + 2)g 

(116) 

( I l c )  i = 1 , 2  , . . . ,  n. 

By solving (8) we can find all the coefficients in terms of A and g and then equation 
(9) gives the relation between A and g. Equation (8) has a unique solution because 
the determinant of the square matrix b,, is (2n +v)!. The first four eigenvalues, the 
unnormalised eigenfunctions (apart from the exponential factor) and the relations 
between A ’ and g are given below: 

(1) d‘O(x) = 1 E: = 1 A ’ = O  

(2) + ? ( x ) = x  E 7 = 3  A ’ = O  

(3) 4; ( x )  = 1 -$(4 +A’)x2  

A ’ @ ’ +  2g + 4 )  = 0 

E ;  = 5 + A ’  

(4  1 C $ ; ( X ) = X  -k(4+A’)x3 E ;  = 7 + A ’  

A’(A’+6g + 4 )  = 0. 

For any value of n when the wavefunctions are given by (6 )  and (7) the coefficients 
may be determined from (8) by the application of Cramer’s rule. For example a2n-2+v 
and a2,,+” are given by 

1 
(2n + v)! a2n-2+* = 

611 0 . . .  -4n-A’ 0 
621 622 . . . -4ng 0 
631 632 . . . 0 0 

b n i  bn2 . . . 0 b,, 
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l b l l  0 . . .  0 -4n-A' [  

Ibl, biz . . . 6,i-l 0 i 
The condition for the existence of the solutions is given by (9). A little manipulation 
will show that this condition is identical to that obtained by Whitehead et a1 (1982, 
equation (2.14)) and therefore following Whitehead et a1 ( i982)  we may state the 
following important properties regarding the nature of solutions of equation (9): (i) 
A '  = 0 is always one of the roots, ( i i )  all the roots are real and iiii) the non-zero roots 
are all negative. 

Here we have given explicit expressions of all the even- and odd-parity solutions. 
Equations (8) and (9) are suitable for numerical evaluation of all the eigenfunctions 
for specific values of A ' and g given by (9). 

3. Approximate eigenvalues 

In the general case when g > 0  we develop a method of obtaining the approximate 
eigenvalues of the Schrodinger equation (1) with the interaction (21. We may write 
equation (1) in two forms: 

(12) 

(13) 

td2/dx + E  - X '  - A  'fl (X ) )&(x) = 0 

( d2 / dx + E - x ' - A ' + A ' f r  ( x ) ) CL (X ) = 0 

where 

As x varies from -E to +CO the function f i ( x  1 runs from 1 to 1 through zero at x = 0, 
whereas f 2 ( x )  runs from 0 to 0 through 1 at x = 0, f l ( x )  and f2 ix)  being non-negative 
always. If the variations of these two functions are assumed to be small and they are 
replaced by their expectation values ( f l )  and (fi) in the considered quantum state. 
equations (12)  and (13) become harmonic oscillator equations. We take the average 
of the two eigenvalues thus obtained, since i t  may be assumed that the error made 
by replacing f l i x )  by ( f l )  will be compensated by the error made by replacing f 2 ( x )  
by (f2). Both the functions f l i x )  and f z ( x )  vary between 0 and 1 and the minimum 
of f l ( x )  falls at the maximum of f : ( x  J and cice versa, and moreover f l ( x )  is concave 
upwards whereas f 2 ( x )  is concave downwards. So the errors go in the opposite 
directions in  the two cases and will cancel each other when added provided A ' is small. 
According to this scheme the energy eigenvalues are given by 

E,, = 2n + 1 + ;A ' - A '(4; 2"n ! ) - ' I ,  (16) 
where 

with n = 0, 1, 2, , . . and H , ( x )  a Hermite polynomial of order n.  The integrations of 
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equation (17) can be performed easily by using the following results (Gradshteyn and 
Ryzhik 1965) : 

lom exp(-x2)x2"/(1 +gx2)  dx 

where T ( a ,  x )  is the incomplete gamma function having the series expansion 

The results of the first four integrals I ,  for any positive value of g are given below: 

I" = 3g-lI2 exp(l /g)[r( t ) r ( t ,  l / g )  - rtfm-i, l / g ) i  (20a 1 
(20b 1 iI = 2g-3/2 exp(l /g)[r(?)r(- i ,  i / g ) - r & r ( - ? ,  i / g ) ]  

= e ~ p ( l / g ) ( - s g - ~ / ' r ( i ) r ( - ~ ,  l / g )  +8 (1  +g)g-5/2r($)r(-?,  l / g )  

- (8 + 2g)g-3/2r(;)r(-f, i / g )  + 2g- ' / ' r ( t ) r ( t ,  i / g ) )  

i3 = exp( l /g) ( -32g-7 /2r(~)r( - i ,  i /g )+(32+96g)g-7 /2r ( i ) r ( -~ ,  l / g )  

(20c) 

- (96 + 72g)g-5/2r($)r(-f ,  i / g )  + 72g-3/2r(t)r(-:, i /g ) ) .  (20d) 

With the help of these equations and (19) the first four eigenvalues can be calculated 
easily. They are given in table 1 for g = 0.5, 1, 2, 5, 10, 20, 100 and 500. We find 
that for small values of A ' ,  the eigenvalues are linear functions of A ' .  The equations 
can also be used to evaluate the energy eigenvalues for small negative values of A ' .  
The first four eigenvalues for g s 2 obtained by this method are compared with the 
existing results in table 2. The agreement in general is excellent. When g is large we 
have to take only a few terms of series (19) of the incomplete gamma function and 
the calculation becomes simple. The expressions of the first four eigenvalues when g 
is sufficiently large are given below: 

(21a) 

(21b) 

Eo = 1 + A ' ( 1 -  4, g-"' +$g-') 

E 1 = 3 + A  '( 1 - ig- '  + 24; g-3/2)  

Table 1. The expressions of the first four eigenvalues for g = 0.5, 1, 2, 5, 10, 20, 100, 
500 and small values of A .  

g E"- 1 E l - 3  E2-5 E,-? 

0.5 
1 
2 
5 

10 
20 

100 
500 

0.314 5246h 
0.242 1296h 
0.172 1604h 
0.097 9383h 
0.059 4434h 
0.034 3377A 
0.008 41 1h 
0.001 8451h 

0.741 903h 0.931 4597A 
0.515 74h 0.589 5768h 
0.327 8394A 0.344 3208h 
0.160 8245h 0.155 9797h 
0.088 1112h 0.082 7987h 
0.046 5662h 0.043 273h 
0.009 8317A 0.009 2574A 
0.001 9926h 0.001 9279h 

0.997 3218A 
0.648 9344h 
0.374 2396h 
0.169 855h 
0.090 3768h 
0.047 105A 
0.009 8449h 
0.001 9929h 
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Table 2. The first four eigenvalues (correct up to five decimal places) obtained by four 
different methods for g = 0.5, 1 and 2. 

Mitra Bessis and Lai and The present 
(1978) Bessis (1980) Lin (1982) calculation 

1.031 21 
3.073 89 
5.093 05 
- 

1.031 21 
3.073 90 
5.093 07 
7.105 85 

1.031 21 
3.073 90 
5.093 06 
7.105 84 

1.031 45 
3.074 19 
5.093 15 
7.099 73 

A =0 .1  
g = 0.5 

1.151 56 
3.363 80 
5.463 20 
- 

1.151 56 
3.363 80 
5.463 21 
7.527 88 

1.151 56 
3.363 80 
5.463 21 
7.527 89 

1.157 26 
3.370 95 
5.465 73 
7.498 66 

A =0.5 
g = 0.5 

1.292 95 
3.713 90 
5.920 63 
- 

1.292 95 
3.713 90 
5.920 63 
8.052 38 

1.292 95 
3.713 90 
5.920 63 
8.052 44 

1.314 52 
3.741 90 
5.93 1 46 
7.997 32 

A = 1  
g = 0.5 

1.024 10 
3.051 49 
5.034 44 
- 

1.024 19 
3.051 65 
5.059 29 
7.065 50 

1.024 12 
3.051 53 
5.058 99 
7.064 97 

1.024 21 
3 051 57 
5.058 96 
7.064 89 

h =0.1  
g = 1  

1.118 54 
3.255 77 
5.294 88 
- 

1.118 59 
3.255 84 
5.295 06 
7.324 54 

1.118 55 
3.255 80 
5.294 92 
7.324 46 

1.121 06 
3.257 87 
5.294 79 
7.324 47 

A =0.5 
g = l  

1.232 35 
3.507 38 
5.589 77 
- 

1.232 37 
3.507 42 
5.589 86 
7.648 32 

1.232 35 
3.507 40 
5.589 83 
7.649 07 

1.242 13 
3.515 74 
5.589 58 
7.648 93 

A = l  
g = l  

1.017 18 
3.032 76 
5.034 44 
- 

1.017 89 
3.031 77 
5.055 85 
7.034 74 

1.017 28 
3.032 96 
3.034 55 
7.037 76 

1.017 22 
3.032 78 
5.034 43 
7.037 42 

A =0 .1  
g = 2  

1.085 19 
3.163 46 
5.172 40 
- 

1.087 06 
3.186 78 
5.176 89 
7.226 54 

1.085 29 
3.163 71 
5.172 58 
7.188 01 

1.086 08 
3.163 92 
5.172 16 
7.187 15 

A =0.5 
g = 2  

1.168 67 
3.326 02 
5.345 24 
- 

1.170 49 
3.329 04 
5.348 49 
7.381 14 

1.168 72 
3.326 14 
5.345 64 
7.378 34 

1.172 16 
3.327 80 
5.344 32 
7.374 24 

A = l  
g = 2  

It is interesting to compare our results given by formula (16) and the asymptotic 
expressions (21) with the exact values of Bessis and Bessis (1980) for large values of 
g. The first four energy levels for g = 100 and 500 are given in table 3. From the 
tables it is clear that this simple scheme is suitable for excited state energy eigenvalues 
and for large values of g. As is expected, the eigenvalues decrease steadily with 
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Table 3. The first four energy levels for high values of g:  (a) formula (16), (b) formula 
(21), (c) Bessis and Bessis (1980). 

The present The expressions Bessis and 
calculation (21) Bessis (1980) 
(a) (b) ( C )  

A =0.1 
g = 100 

h = 10 
g = 100 

A = 100 
g = 100 

A =0.1 
g =500 

A = 100 
g = 500 

h =500 
g = 500 

1,000 841 1 
3.000 983 17 
5.000 927 54 
7.000 984 49 

1.084 11 
3.098 317 
5.092 754 
7.098 449 

1.841 1 
3.983 17 
5.927 54 
7.984 49 

1.000 184 51 
3.000 199 26 
5.000 192 79 
7.000 199 29 

1.184 51 
3.199 26 
5.192 76 
7.199 29 

1.922 5 5  
3.996 30 
5.963 95 
7.996 45 

1.000 847 8 
3.000 988 5 
5.000 933 9 
7.000 987 7 

1.084 78 
3.098 85 
5.093 39 
7.098 77 

1.847 75 
3.988 54 
5.933 88 
7.987 66 

1.000 185 1 
3.000 199 5 
5.000 193 0 
7.000 199 4 

1.185 15 
3.199 46 
5.192 97 
7.199 45 

1.925 73 
3.997 32 
5.964 87 
7.997 24 

1.000 841 1 
3.000 983 1 
5.000 925 7 
7.000 984 5 

1.084 064 3 
3.098 317 0 
5.092 762 46 
7.098 449 1 

1.836 385 0 
3.983 099 2 
5.928 352 5 
7.984 444 8 

1.000 11849 
3.000 199 2 
5.000 192 8 
7.000 199 2 

1.184 863 2 
3.199 260 1 
5.192 804 3 
7.199 287 9 

1.923 226 0 
3.996 296 9 
5.964 116 1 
7.996 436 7 

increasing g and fixed A and approach the eigenvalues 2n + 1 ( n  = 0, 1 ,2 ,  . . .) of the 
harmonic oscillator asymptotically for large g. 

4. Conclusion 

In this paper we have presented a method of obtaining all the exact even- and 
odd-parity eigenvalues and eigenfunctions when A and g are related by some specific 
relations. The eigenfunctions and the eigenvalues reduce to the harmonic oscillator 
eigenfunctions and eigenvalues as A + O ,  In the general case a simple equation for 
approximating the energy eigenvalues has been developed. For large values of g and 
small A/g it seems that the present method works well, whereas the asymptotic series 
expansion scheme (Kaushal1979), Pade approximant method (Lai and Lin 1982) and 
the variational calculation of Mitra (1978) are restricted to low values of g 6 2. The 
present scheme is simple and may be used for obtaining excited state energy eigen- 
values. It is clear from (16) and (17) that we have in fact assumed that (1 -gx2)/(1 - 
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g x 2 )  is a slowly varying function and we have taken its expectation value in the 
considered quantum state. It should be mentioned here that the method of approximat- 
ing a slowly varying function by a constant has been used for a long time in the 
literature for the case of the Yukawa potential (Ecker and Weizel 1956, Lam and 
Varshni 1976, Talukdar et a1 1978, Das et a1 1979) and exponential cosine screened 
Coulomb potential (Dutt 1979, Ray and Ray 1980). 
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