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Abstract. The method of obtaining the explicit expressions of all the even- and odd-parity
exact solutions of the Schrédinger equation for the interaction x2+Ax?/(1+gx?) is dis-
cussed when the couplings A and g satisfy some specific relations. In the general case a
simple equation for approximating the energy eigenvalues has been developed.

1. Introduction

The importance of the one-dimensional non-polynomial interaction Lagrangian of

the kind x>+ Ax?/(1+gx?) has been pointed out by a number of authors in connection

with the nonlinear Lagrangian field theory (Risken and Vollmer 1967) and nonlinear

optics (Haken 1970). The Schrdodinger equation with such an interaction Lagrangian

is the analogue of a zero-dimensional field theory with a nonlinear Lagrangian which

is used in elementary particle physics (Biswas ef al 1973, Salam and Strathdee 1970).
The Schrodinger equation

(d*/dx*+E-V(x)Wix)=0 (1)
with the potential
Vix)=x>+Ax?/(1+gx?) —0<x <O (2)

has recently been studied by many authors using different variational techniques (Mitra
1978, Bessis and Bessis 1980), the Padé approximant method (Lai and Lin 1982),
the Hill determinant method (Hautot 1981), the asymptotic series expansion scheme
(Kaushal 1979), the finite difference method (Galicia and Killingbeck 1979) and the
perturbed operators method (Bessis er a/ 1983). The existence of a class of exact
solutions for particular values of A and g has recently been shown by Flessas (1981),
Varma (1981), Whitehead et al (1982) and Znojil (1983). Whitehead er a/ (1982)
have also presented a number of theorems regarding the general nature of these
solutions. Znojil (1983) has proceeded along the same lines as Whitehead er a/ (1982)
and has constructed the exact wavefunctions and an analytic continued-fractional
Green function for the Schrédinger equation (1) with the potential (2) and with a
more general potential.

In the present paper we would like to make a systematic study of the exact even-
and odd-parity solutions in the form of products of exponential and polynomial
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functions of x. For the existence of these types of solutions it is necessary that A and
g should be related. Our method described in § 2 is suitable for numerical evaluation
of all the coefficients of the polynomials of x and the corresponding connection
between A and g which is identical to that given by Whitehead et a/ (1982). In §3
we develop an approximation scheme which is simple and accurate for obtaining the
energy eigenvalues in the general case. The perturbation calculation for the interaction
(2) is made by expanding the factor 1/(1+gx?) in a power series for gx>. Lai and
Lin (1982) have applied the Hellmann-Feynman theorem aud hypervirial theorems
to the perturbation series to calculate the energy eigenvalues. They have also employed
the hypervirial relations (Hirschfelder 1960, Swenson and Danforth 1972) and the
Padé approximant method (Baker 1965, Loeflel et al 1969, Killingbeck 1978, Lai
1981) to the energy series. The results, however, require the asymptotic expansion
of the factor 1/(1+gx?) in a power series of gx* which is valid for low values of g(<2)
only. The variational calculations on the other hand require very elaborate numerical
computations. We would like to solve the problem in a completely different way. We
replace a slowly varying function by a constant and obtain a simple expression for
the energy eigenvalues. The results of the present calculation are in good agreement
with the existing results.

2. Exact solutions to the Schrodinger equation
First of all we make the standard substitution

Y (x) =exp(~x*/2)¢ (x) (3)
to transform the Schrodinger equation into the form

(1+gx")[e"(x)~2xe'(x)]+[E ~1+x*(Eg —g M)} (x) = 0. (4)
It is clear from this equation that x = 0 is an ordinary point and x = o0 is an irregular
singular point of the differential equation when g > 0. Therefore equation (4) admits

a convergent series solution about x =0. The infinite series must be truncated in
order to satisfy the boundary conditions

lim ¢(x)=0 (5)

xX—=>+0C

for the normalisation of the wavefunction. Thus we may assume the even- and
odd-parity solutions of equation (4) in the form of polynomials of x

¢Sk =1+ Y am?” ©)
1

me=

n
Ponerx)=x+ Z Azmerx"! o
m=1

where the overall normalisation constants of the wavefunctions have been omitted.

The superscripts ‘e’ and ‘0’ in equations (6) and (7) refer to the even- and odd-parity
solutions.
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We substitute (6) and (7) into (4) to obtain the recurrence relations between the
coefficients A,,2,.+,. These relations may be written in matrix notation:

‘b11 0 0 Ja2+u ’_471—/\[‘
b21 bzz 0 ‘e A4+, —4ng
bir bax bis = 0 (8)
0 bar baz : :
: : . bnn‘ \a2n+u, \ 0
with
[(2n—-1+v)2n+v)g+A'las,., +4gasn -2+, =0 n=2 (9)
and
ES°=4n+1+A"+2v n=0 (10)

where v =0 for the even-parity solutions and v =1 for the odd-parity solutions,
"= \/g, and the non-zero matrix elements b; of the equation (8) are given by

by =QRi-1+v)2i+v) (11a)
bii1=QRi-3+v)2i-2+v)g+4n—i+1)+A’ (1156)
by2=4n-i+2)g i=1,2,...,n (11c¢)

By solving (8) we can find all the coefficients in terms of A and g and then equation
(9) gives the relation between A and g. Equation (8) has a unique solution because
the determinant of the square matrix b; is (2n +v)!. The first four eigenvalues, the
unnormalised eigenfunctions (apart from the exponential factor) and the relations
between A’ and g are given below:

) dox)=1 E5=1 A'=0

(2) PT(x)=x E7=3 A'=0

(3) @5(x)=1-3(4+Ax’ E5=5+)\'
AMA'+2g+4)=0

4) $35(x)=x —s(4+A")x’ ES=T7+A'

A'A +6g+4)=0.

For any value of n when the wavefunctions are given by (6) and (7) the coefficients
may be determined from (8) by the application of Cramer’s rule. For example dyn -2+,
and a,,+, are given by

b11 0 PN —4n “/\’ 0
1 b21 b22 e —4ng 0
Azn-2+v =

(271+V)! b31 b32 . 0 0
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b11 0 0 —4n—/\'i
_ 1 b21 b22 0 —4ng
G T on s by by ... 0 0
bnl an v bnn—l O

The condition for the existence of the solutions is given by {9). A little manipulation
will show that this condition is identical to that obtained by Whitehead et a/ (1982,
equation (2.14)) and therefore following Whitehead et a/ (1982) we may state the
following important properties regarding the nature of solutions of equation (9): (i)
A'=0 is always one of the roots, (ii) all the roots are real and (iii) the non-zero roots
are all negative.

Here we have given explicit expressions of all the even- and odd-parity solutions.
Equations (8) and (9) are suitable for numerical evaluation of all the eigenfunctions
for specific values of A" and g given by (9).

3. Approximate eigenvalues

In the general case when g >0 we develop a method of obtaining the approximate
eigenvalues of the Schrédinger equation (1) with the interaction (2). We may write
equation (1) in two forms:

(d*/dx*+E —x* = A'fi(x ) (x) =0 (12)

(d*/dx*+E —x> = A"+ A f2x ) (x) =0 (13)
where

fulx)=gx?/i1+gx?) (14)

fax)=1/(1+gx?). (15)

As x varies from —oC to +00 the function f;(x) runs from 1 to 1 through zero at x =0,
whereas f>(x) runs from 0 to O through 1 at x =0, f,(x) and f(x ) being non-negative
always. If the variations of these two functions are assumed to be small and they are
replaced by their expectation values (f;) and (f) in the considered quantum state,
equations (12) and (13) become harmonic oscillator equations. We take the average
of the two eigenvalues thus obtained, since it may be assumed that the error made
by replacing fi(x) by (f1) will be compensated by the error made by replacing f(x)
by (f2). Both the functions fii{x) and f.(x) vary between 0 and ! and the minimum
of fi(x) falls at the maximum of f>(x) and vice versa, and moreover f;(x) is concave
upwards whereas f>(x) is concave downwards. So the errors go in the opposite
directions in the two cases and will cancel each other when added provided A ' is small.
According to this scheme the energy eigenvalues are given by

E,=2n+1+"—A'Ww2u)7'I, (16)
where

1,1=J exp(—x)H 5 (x)1—gx?)/(1+gx?) dx (17)
(4}

withn =0, 1, 2,...and H,(x) a Hermite polynomial of order n. The integrations of
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equation (17) can be performed easily by using the following results (Gradshteyn and
Ryzhik 1965):

J exp(—x?)x?"/(1+gx?) dx
o]

=zexp(l/g)g " "T(n +3)TG-n, 1/g) n=0 (18)
where I'(a, x) is the incomplete gamma function having the series expansion
e
Max)=Ta)- § S0, (19
The results of the first four integrals I, for any positive value of g are given below:
Iy= zg“” exp(1/g)[T@I(E, 1/g)-TAT(-3, 1/g)] (20a)
Ii=2g7? exp(1/g)[T3)I(-3,1/g)-TBT(-3, 1/8)] (206)
Iy =exp(1/g)(—8g **THT(-3,1/g)+8(1+g)g **THT(-3, 1/g)
~(8+2g)g *TGIN(-3,1/g)+2¢ *THIT(G, 1/g)) (20¢c)
Iy=exp(1/g)(—32¢"TGT(-3, 1/g)+(32+96g)g " *TGI(-3, 1/g)
—(96+72g)g *"TGT(-3,1/g)+72¢ >’ T(T(-3, 1/g)). (20d)

With the help of these equations and (19) the first four eigenvalues can be calculated
easily. They are given in table 1 for g =0.5, 1, 2, 5, 10, 20, 100 and 500. We find
that for small values of A’, the eigenvalues are linear functions of A’. The equations
can also be used to evaluate the energy eigenvalues for small negative values of A'.
The first four eigenvalues for g <2 obtained by this method are compared with the
existing results in table 2. The agreement in general is excellent. When g is large we
have to take only a few terms of series (19) of the incomplete gamma function and
the calculation becomes simple. The expressions of the first four eigenvalues when g
is sufficiently large are given below:

Eo=1+A"(1-vVmg ?+3g™h (21a)

=3+A(1-3g '+ 2Vng ¥} (215)
Ey=5+A(1-Wrmg ' ?+%7Y (21¢)
Es=7+\(1-3g "+mg™?), (21d)

Table 1. The expressions of the first four eigenvalues for g=05,1, 2,5, 10, 20, 100,
500 and small values of A.

g Ey-1 E -3 E,-5 E;-7
0.5 0.314 5246\ 0.741 903 0.9314597x 0.997 3218A
1 0.242 12964 0.51574A 0.589 5768\ 0.648 93444
2 0.172 16044 0.327 83944 0.344 3208A 0.374 2396A
S 0.097 9383A 0.160 8245A 0.1559797A 0.169 855A
10 0.059 44344 0.088 11124 0.082 7987 0.090 37684
20 0.034 3377A 0.046 56624 0.043 273A 0.047 1054
100 0.008 411A 0.009 8317A 0.009 25744 0.009 8449A

500 0.001 84514 0.001 99264 0.0019279A 0.001 99294
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Table 2. The first four eigenvalues (correct up to five decimal places) obtained by four
different methods for g = 0.5, 1 and 2.

Mitra Bessis and Lai and The present

(1978) Bessis (1980) Lin (1982) calculation
1.03121 1.03121 1.03121 1.03145
A=01 3.073 89 3.073 90 3.073 90 3.074 19
g=05 5.093 05 5.093 07 5.093 06 5.093 15
— 7.105 85 7.105 84 7.09973
1.151 56 1.151 56 1.151 56 1.157 26
A=05 3.363 80 3.363 80 3.363 80 3.37095
g=0.5 5.463 20 5.46321 5.46321 546573
— 7.527 88 7.527 89 7.498 66
1.29295 1.29295 1.29295 1.314 52
A= 3.71390 3.71390 3.71390 3.741 90
g=0.5 5.920 63 5.92063 5.92063 5.93146
— 8.052 38 8.052 44 7.997 32
1.024 10 1.024 19 1.024 12 1.024 21
A=0.1 3.05149 3.05165 3.05153 305157
g= 5.034 44 5.05929 5.058 99 5.058 96
— 7.065 50 7.064 97 7.064 89
1.118 54 1.118 59 1.118 55 1.121 06
A=0.5 3.25577 3.25584 3.25580 3.25787
g=1 5.294 88 5.29506 5.294 92 5.294 79
— 7.324 54 7.324 46 7.324 47
1.23235 1.232 37 1.23235 1.242 13
=1 3.507 38 3.507 42 3.50740 3.51574
g=1 5.58977 5.589 86 5.589 83 5.589 58
— 7.648 32 7.649 07 7.648 93
1.017 18 1.017 89 1.01728 1.017 22
A=0.1 3.03276 3.03177 3.03296 3.03278
g=2 5.034 44 5.05585 3.034 55 5.034 43
— 7.034 74 7.03776 7.03742
1.085 19 1.087 06 1.085 29 1.086 08
A=05 3.163 46 3.186 78 3.16371 316392
g=2 5.172 40 5.176 89 5.172 58 5.172 16
—_— 7.226 54 7.188 01 7.187 15
1.168 67 1.170 49 1.168 72 1.172 16
A=1 3.326 02 3.32904 3.326 14 3.32780
g=2 5.34524 5.348 49 5.34564 5.344 32
— 7.381 14 7.378 34 7.374 24

It is interesting to compare our results given by formula (16) and the asymptotic
expressions (21) with the exact values of Bessis and Bessis (1980) for large values of
g- The first four energy levels for g = 100 and 500 are given in table 3. From the
tables it is clear that this simple scheme is suitable for excited state energy eigenvalues
and for large values of g. As is expected, the eigenvalues decrease steadily with
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Table 3. The first four energy levels for high values of g: (a) formula (16), (b) formula
(21), (c) Bessis and Bessis (1980).

The present The expressions Bessis and
calculation 21) Bessis (1980)
(a) (b) (c)
1.0008411 1.000847 8 1.0008411
A=0.1 3.000983 17 3.000988 5 3.0009831
g =100 5.000 927 54 5.0009339 5.0009257
7.000 984 49 7.000 987 7 7.000984 5
1.084 11 1.084 78 1.084 064 3
A =10 3.098 317 3.098 85 3.0983170
g =100 5.092754 5.09339 5.092 762 46
7.098 449 7.098 77 7.098 449 1
1.8411 1.84775 1.836 3850
A =100 398317 3.988 54 39830992
g =100 5.927 54 5.933 88 5.92813525
7.984 49 7.987 66 7.984 444 8
1.000 184 51 1.000 1851 1.000 11849
A=0.1 3.000 199 26 3.0001995 3.0001992
g =500 5.00019279 5.0001930 5.0001928
7.000 199 29 7.000 199 4 7.0001992
1.184 51 1.18515 1.184 8632
A =100 3.19926 3.19946 3.1992601
g =500 5.19276 519297 5.1928043
7.199 29 7.199 45 7.199 2879
1.922 55 1.92573 1.9232260
A =300 3.996 30 3.99732 3.996296 9
g =500 5.963 95 5.964 87 5.964 1161
7.996 45 7.997 24 7.996 4367

increasing g and fixed A and approach the eigenvalues 2n+1 (n =0, 1, 2,...) of the
harmonic oscillator asymptotically for large g.

4. Conclusion

In this paper we have presented a method of obtaining all the exact even- and
odd-parity eigenvalues and eigenfunctions when A and g are related by some specific
relations. The eigenfunctions and the eigenvalues reduce to the harmonic oscillator
eigenfunctions and eigenvalues as A > 0. In the general case a simple equation for
approximating the energy eigenvalues has been developed. For large values of g and
small A/g it seems that the present method works well, whereas the asymptotic series
expansion scheme (Kaushal 1979), Padé approximant method (Lai and Lin 1982) and
the variational calculation of Mitra (1978) are restricted to low values of g<2. The
present scheme is simple and may be used for obtaining excited state energy eigen-
values. It is clear from (16) and (17) that we have in fact assumed that (1 —gx /(11—
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gx?) is a slowly varying function and we have taken its expectation value in the
considered quantum state. Itshould be mentioned here that the method of approximat-
ing a slowly varying function by a constant has been used for a long time in the
literature for the case of the Yukawa potential (Ecker and Weizel 1956, Lam and
Varshni 1976, Talukdar et al 1978, Das et al 1979) and exponential cosine screened
Coulomb potential (Dutt 1979, Ray and Ray 1980).
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